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LETTER TO THE EDITOR 

Generalized quantization scheme for central extensions of 
Lie algebras 

A A Balinskyt 
Technion-Israel InstiNte of Technology. Depanment of Mathematics, 32000 Haifa, Israel 

Received 18 October 1993 

Abstract. We present the method for finding nonlinear Poisson-Lie group sm~ctures on the 
vector spaces and for their quantization. Explicit quantization formulas are proposed for arbilmy 
central extension of a Lie algebra 

Quantum algebras, or q-deformed algebras, have been useful in the investigation of many 
physical problems. As a matter of fact, the research in q-groups was indeed originated 
f“ physical problems. The interest in’q-groups arose almost simultaneously in statistical 
mechanics and also in conformal field theories, in solid state physics and in the study 
of topoIogically non-trivid.so1utions of nonlinear equations. III this letter new examples 
related to inhomogeneous quantum groups of physical interest are developed and we give 
an explicit formula for their quantization (in the sense of [ l ] ) .  

It is well known that the structure of a Poisson-Lie group on a vector space (considered 
as a commutative group by addition) is defined by an arbitrary Poisson bracket depending 
linearly on the coordinate functions, i.e. by a Lie algebra structure on an adjoint space. The 
quahtization of such a Poisson bracket leads to the universal enveloping algebra of this Lie 
algebra 141, and the commutativity of the coproduct follows from the commutativity of a 
vector space. Therefore, we can attempt to deform the group structure on the vector space 
and in this way obtain the~non-commutative and non-cocommutative Hopf algebras [ I ,  51. 

We have the following model example. 

Example. 
Consider on R3 the following Poisson bracket 

sinh yH 
Y 

{ H , x ) = x  { H , y } = - y  . { x , y ] =  - y # 0 is a parameter. 

This bracket has the properties: 

The bracket is compatible with the following coproduct on Cm(R3) 

A ( y ) = y O e x p ( y H / Z ) + e x p ( - y H / Z ) 8 y ,  A ( H ) = H 0 1 + 1 8 H H ,  
which can be obtained &om the group operation on R3: 

= x 8 exp ( y H / Z )  + exp ( - y H / Z )  8 x ,  

h+h’ 
xexp(yh’/Z)+exp(-yh/Z)x’ 
YeXp(yh’/2)+exp(-yh/Z)y’ 

Hence (R3,  *) is the Poisson-Lie group [ I ,  31. 
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A simple substitution of this bracket by the commutator leads to the quantum s@). 

In this letter we study a method for finding such Poisson-Lie group structures on the 
vector spaces and their quantization. 

A simple way to obtain a structure of non-commutative Lie group on a vector space is the 
consideration of a commutative extension of the commutative group. Let H and V be vector 
spaces, and pI and pz be two commuting representations of H (as the commutative Lie 
group) on the space V. Then we can introduce the following Lie group 6 = (H @ V, *). 
where 

(1) (h,  U) * (h', U') = (h + h', pl(h)d+pz(h')- lv) .  

(h ,  U)-1 = (4, -p1(-h)pz(h)u). 

For this group the point (0,O) is the unit and 

The coproduct A, counit 6 and the antipode S on P ( 6 )  of the linear functions have the 
same form as the corresponding maps in [Z]. In [Z] (cf [61) it was proposed to use such 
coproduct as a definition of the deformation of the Lie algebra structure 3 on the space 
(H @ Vr. Let 3 be the Lie algebra generated by H i  and X'", where Xi form the basis 
of an Abelian subalgehra. Write down the deformation of the product in U@), which 
preserves (A, 6, S): 

[x', x'] = [x' ,  X" ]O + W r ( H k ;  PI. h). 

Here [x'. xS]o is the initial composition and the deforming functions @"(HI; p13 pz) depend 
on p1, pz and they are the power series of H i .  The question of the possibility of such 
deformation leads to the question of the possibility of defining a Poisson-Lie structure on 
the group 6 for which the global Poisson bracket of the functions ( h i ]  is zero and the 
Poisson bracket of the coordinate functions differs from the linear one only for functions 
of {hi]. It will be good for the quantization of such a system, because we do not have a 
problem with ordering. Therefore we have the problem of finding a globally Poisson-Lie 
bracket on the group 6 from the cocycle S : g + g @I g, where g is the Lie algebra of 6 
and 8' is our [., .IO smcture of the Lie algebra on the space (H CB Vr with [hi, hi]  = 0 
for all i, j. Topologically, the group 6 is a vector space and hence such Poisson bracket 
exists globally. A general analysis when such a bracket is linear + function of (hi]  will be 
done in a forthcoming paper. In general we have 

Lemma 1. If we have a cocycle 6 for which H* is an Abelian subalgebra, the global 
Poisson-Lie bracket of the functions {hi] on 6 equals zero. 

Now we are going to give an exposition of the method for finding the global Poisson 
bracket on 6 from cocycle S. After the change of variables (h. U) H (h, pz(h)u) we obtain 
the group structure on 6 without pz: 

where p(h)  = pl(h)pz(h). Note that the differential of the change in the unit of 6 is I4 
i.e. this change of variables does not change the Lie bialgebra structure on g. Further we 
work with (6, e). Let h. be an infinitesimal version of p ,  i.e. p ( h )  = exp (h.). 
Lemma 2. For the Lie algebra g of the group (2) we have g = H @ V, with [h,  h'] = 0, 

For the Lie group 6 the constant vector field (h', 0) is left-invariant for all h' EH and 
the constant vector field (0, U') is right-invariant for all U EV. J.fn'j(h, U) is the Poisson-Lie 
bracket of the coordinate functions then from the theorem 1.2 in [31 we have 

(h, U) (h', U') = (h + h', p ( h ) ~ '  + U) (2) 

[U, U'] = 0, [h, U] = h.u. 
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Lemma 3. For all k and I tensor a?r/ahk is a lefr-invariant bivector field and an/au' is a 
right-invariant bivector field on the group 6. 

But (an'jjahk, an i j /au ' )~o ,o  is our cocycle 6. From the Lemma 3 and the property 
n(O.0) = 0 we can find n globally. 

Example. 
H and V are one-dimensions, hl . U' = U'. Then 6 is the Poisson-Lie group with bracket 
[h', U') = old + @(eh' - I), where ol and fi  are parameters. A simple substitution of this 
bracket by the commutator leads to the quantum Lie algebra Ua.~ generated by h and U 
with 

[h,  U] = au + @(eh - I) 

A(h) = 1 @ h + h  €3 1 

S(h) = 4, S(u) = e-hu, S(1) = 1 

and (h ' )  

A(u) =ek €3 u + u @  1 

~ ( h )  = €(U) = 0 

V be its central-extension with cocycle Q:, i.e. 

~ ( 1 )  = 1. 

Consider an arbitrary central extension of Lie algebra. Let V = (vi) be a Lie algebra 

[h ' ,  U] = 0 vu E v [U', U'] = Qth' + c;uk (3) 

where CY are the structuring constants of the Lie algebra V (bere and below the summation 
convention over non-fixed repeated indices is in force). Let (Y and p be two commuting 
differentiations of V. Then G = (hl)  @ V' is the Poisson-Lie group with the product (I), 
where pl(h1) = ea*, &I) = #, and with the cocycie adjoint to (3). On 6 coprcduct, 
counit and antipode have the following form: 

~ ( h ' )  = -hi 

E(h') =€(U') = 0. 

[h', u j ]  = Ovj [U', U') = Q'j(h') + (5) 

~ ( u ' )  = -exp(-h'n)exp(h'p)u' 

Theorem 1. The global Poisson-Lie bracket on 6 with the cocycle adjoint to (3) is equal to 

where 

Il~F(h')l l= exp(-h'@) 

Here t is the transposition of the matrix and 11Q'jll is a matrix with the entries of Q'j. 

Theorem2 A simple substitution of this bracket (5) by the commutator leads to the 
quantization of the algebra (3), compatible with (4). 

From these theorems we have a large elass of quantum groups generated by hl and ui with 
the relations (5) and (A, S, E) from (4). Example 1 from [2] is a special case when V is a 
two-diiensional commutative Lie algebra. 

In a forthcoming paper we shall describe in detail the case of the Virasoro algebra. 
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